Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Microbiol Spectr ; 9(2): e0131221, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1443363

ABSTRACT

The large (L) polymerase proteins of most nonsegmented, negative-stranded (NNS) RNA viruses have conserved methyltransferase motifs, (G)-G-G-D and K-D-K-E, which are important for the stabilization and translation of mRNA. However, the function of the (G)-G-G-D and K-D-K-E motifs in the NNS RNA virus Newcastle disease virus (NDV) remains unclear. We observed G-G-D and K-D-K-E motifs in all NDV genotypes. By using the infection cloning system of NDV rSG10 strain, recombinant NDVs with a single amino acid mutated to alanine in one motif (G-G-D or K-D-K-E) were rescued. The intracerebral pathogenicity index and mean death time assay results revealed that the G-G-D motif and K-D-K-E motif attenuate the virulence of NDV to various degrees. The replication, transcription, and translation levels of the K-D-K-E motif-mutant strains were significantly higher than those of wild-type virus owing to their altered regulation of the affinity between nucleocapsid protein and eukaryotic translation initiation factor 4E. When the infection dose was changed from a multiplicity of infection (MOI) of 10 to an MOI of 0.01, the cell-to-cell spread abilities of G-G-D- and K-D-K-E-mutant strains were reduced, according to plaque assay and dynamic indirect immunofluorescence assay results. Finally, we found that NDV strains with G-G-D or K-D-K-E motif mutations had less pathogenicity in 3-week-old specific-pathogen-free chickens than wild-type NDV. Therefore, these methyltransferase motifs can affect virulence by regulating the translation and cell-to-cell spread abilities of NDV. This work provides a feasible approach for generating vaccine candidates for viruses with methyltransferase motifs. IMPORTANCE Newcastle disease virus (NDV) is an important pathogen that is widespread globally. Research on its pathogenic mechanism is an important means of improving prevention and control efforts. Our study found that a deficiency in its methyltransferase motifs (G-G-D and K-D-K-E motifs) can attenuate NDV and revealed the molecular mechanism by which these motifs affect pathogenicity, which provides a new direction for the development of NDV vaccines. In addition to the (G)-G-G-D and K-D-K-E motifs of many nonsegmented, negative-stranded RNA viruses, similar motifs have been found in dengue virus, Zika virus, Japanese encephalitis virus (JEV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This suggests that such motifs may be present in more viruses. Our finding also provides a molecular basis for the discovery and functional study of (G)-G-G-D and K-D-K-E motifs of other viruses.


Subject(s)
Amino Acid Motifs/genetics , Methyltransferases/genetics , Newcastle Disease/transmission , Newcastle disease virus/growth & development , Newcastle disease virus/genetics , Viral Proteins/genetics , Animals , Cell Line , Chickens , Chlorocebus aethiops , Cricetinae , Genome, Viral/genetics , Newcastle disease virus/pathogenicity , Poultry Diseases/transmission , Poultry Diseases/virology , RNA, Viral/biosynthesis , RNA, Viral/genetics , Vero Cells , Virulence/genetics , Virus Replication/genetics
2.
Front Immunol ; 12: 680891, 2021.
Article in English | MEDLINE | ID: covidwho-1291922

ABSTRACT

The network of tunneling nanotubes (TNTs) represents the filamentous (F)-actin rich tubular structure which is connected to the cytoplasm of the adjacent and or distant cells to mediate efficient cell-to-cell communication. They are long cytoplasmic bridges with an extraordinary ability to perform diverse array of function ranging from maintaining cellular physiology and cell survival to promoting immune surveillance. Ironically, TNTs are now widely documented to promote the spread of various pathogens including viruses either during early or late phase of their lifecycle. In addition, TNTs have also been associated with multiple pathologies in a complex multicellular environment. While the recent work from multiple laboratories has elucidated the role of TNTs in cellular communication and maintenance of homeostasis, this review focuses on their exploitation by the diverse group of viruses such as retroviruses, herpesviruses, influenza A, human metapneumovirus and SARS CoV-2 to promote viral entry, virus trafficking and cell-to-cell spread. The later process may aggravate disease severity and the associated complications due to widespread dissemination of the viruses to multiple organ system as observed in current coronavirus disease 2019 (COVID-19) patients. In addition, the TNT-mediated intracellular spread can be protective to the viruses from the circulating immune surveillance and possible neutralization activity present in the extracellular matrix. This review further highlights the relevance of TNTs in ocular and cardiac tissues including neurodegenerative diseases, chemotherapeutic resistance, and cancer pathogenesis. Taken together, we suggest that effective therapies should consider precise targeting of TNTs in several diseases including virus infections.


Subject(s)
COVID-19/etiology , Cytoplasm/ultrastructure , Cytoplasm/virology , Nanotubes/virology , Neurodegenerative Diseases/etiology , Virus Diseases/etiology , Animals , COVID-19/virology , Cell Communication , Humans
SELECTION OF CITATIONS
SEARCH DETAIL